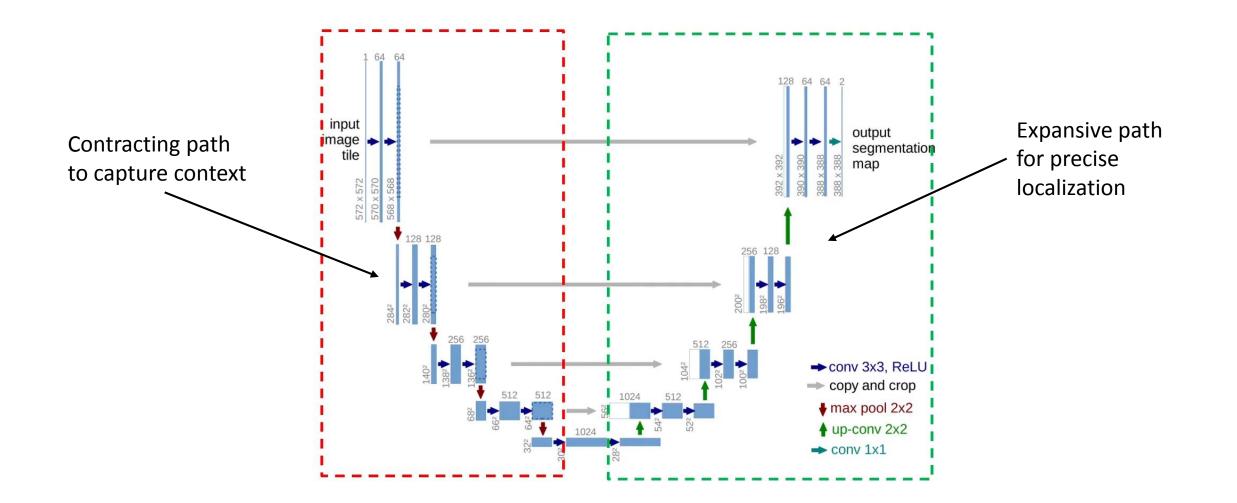
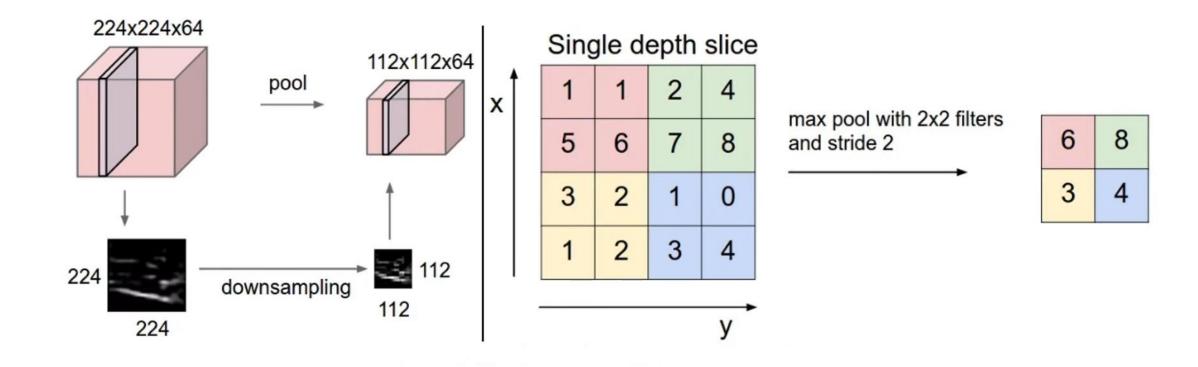
Graph U-Net

Ibrahim Aitkazin

U-net

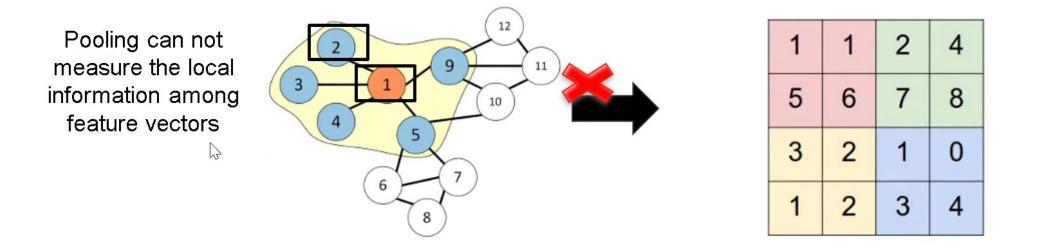


Pooling



Pooling progressively reduce the spatial size of the representation to reduce the number of parameters and computation in the network.

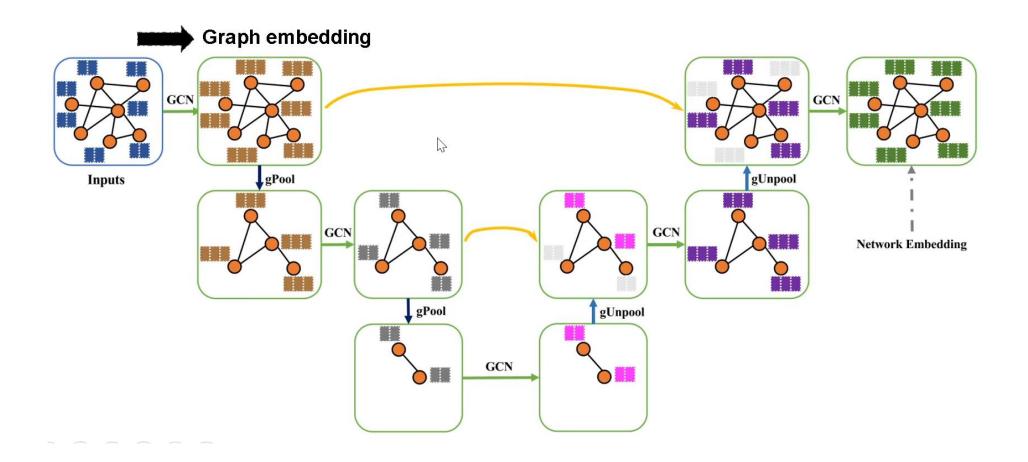
Problem

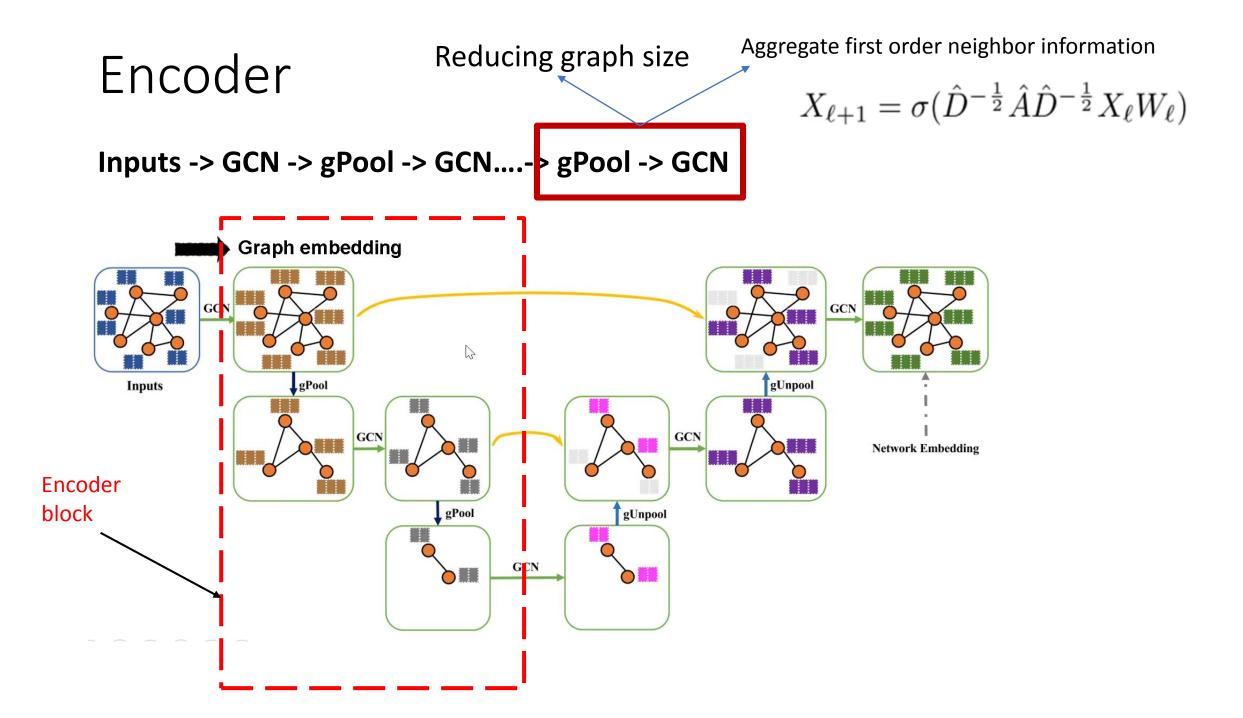


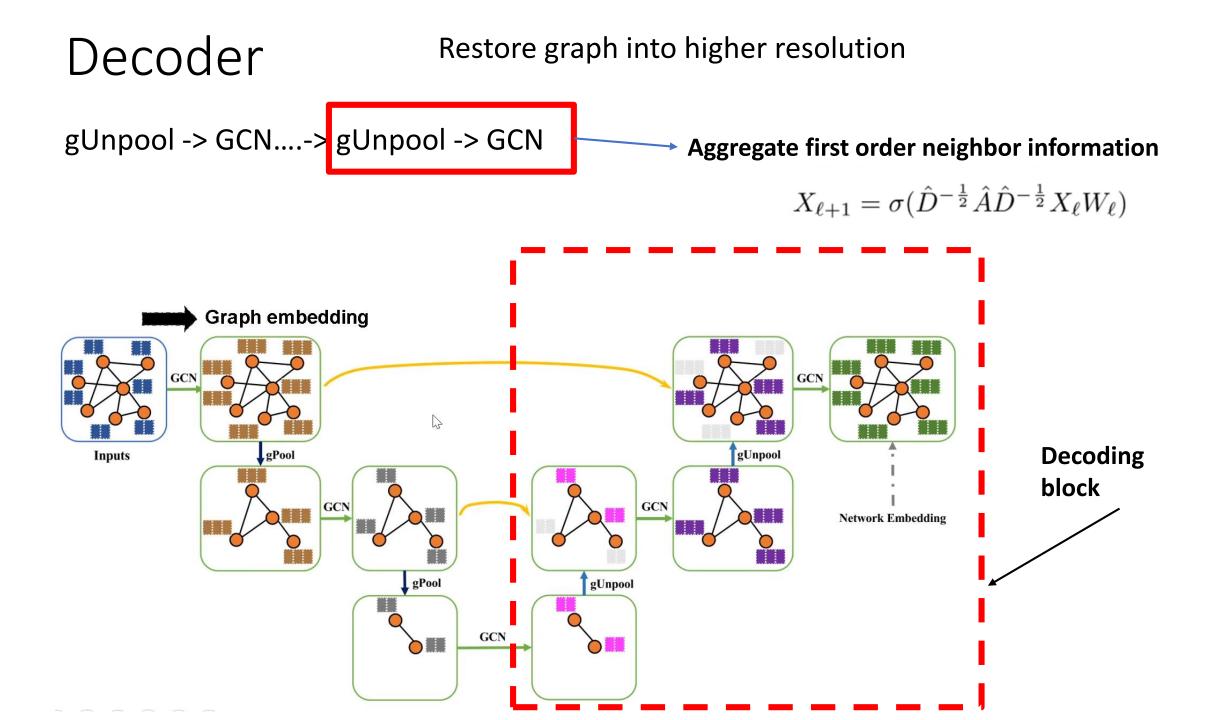
However, we cannot directly apply these pooling operations to graphs. In particular, there is no locality information among nodes in graphs. Thus the partition operation is not applicable on graphs. The global pooling operation will

Graph U-net

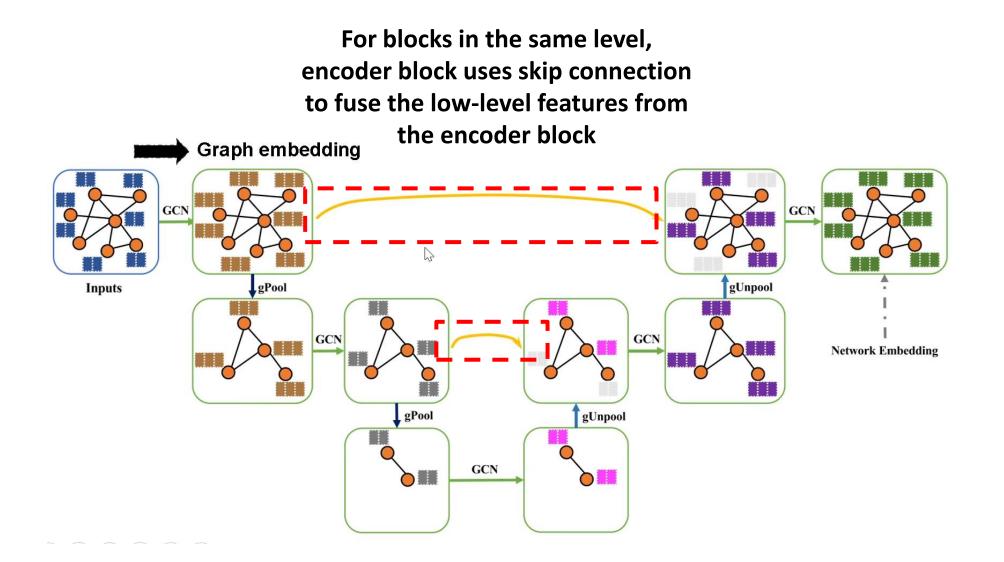
1

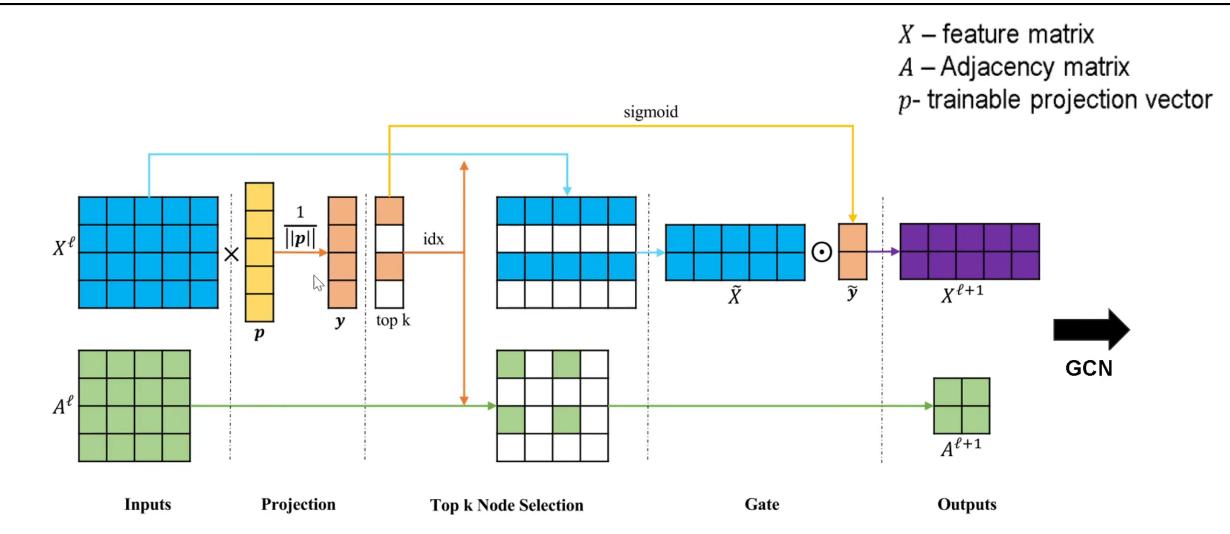


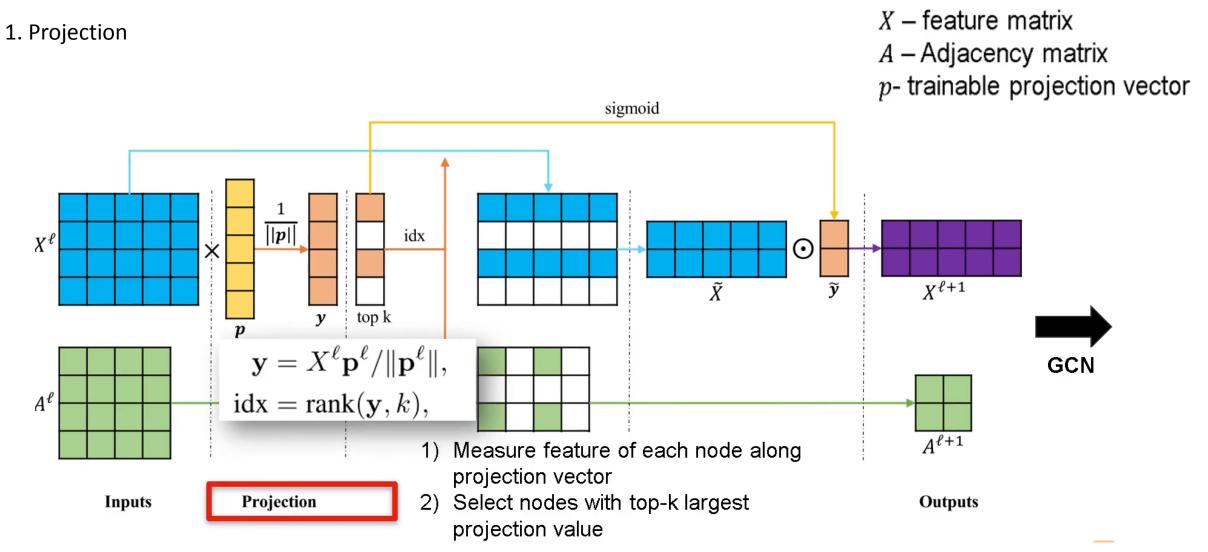




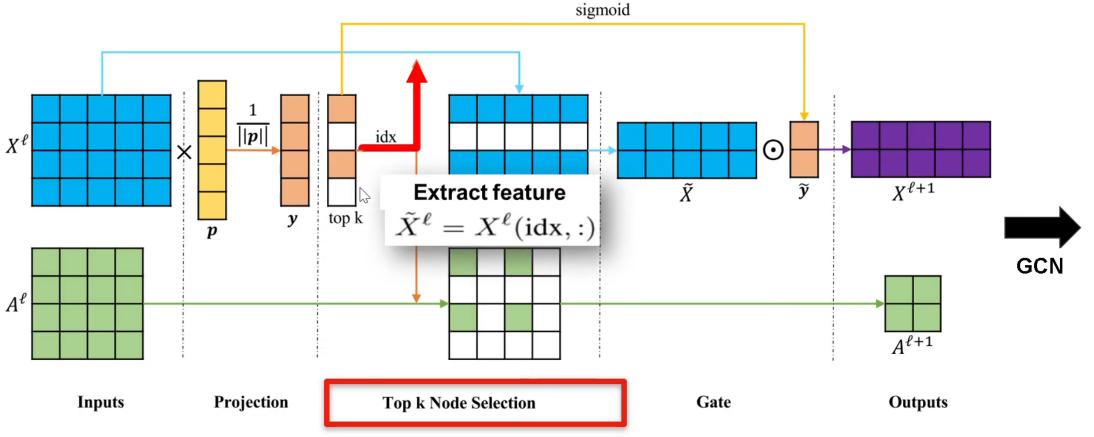
Skip Connection



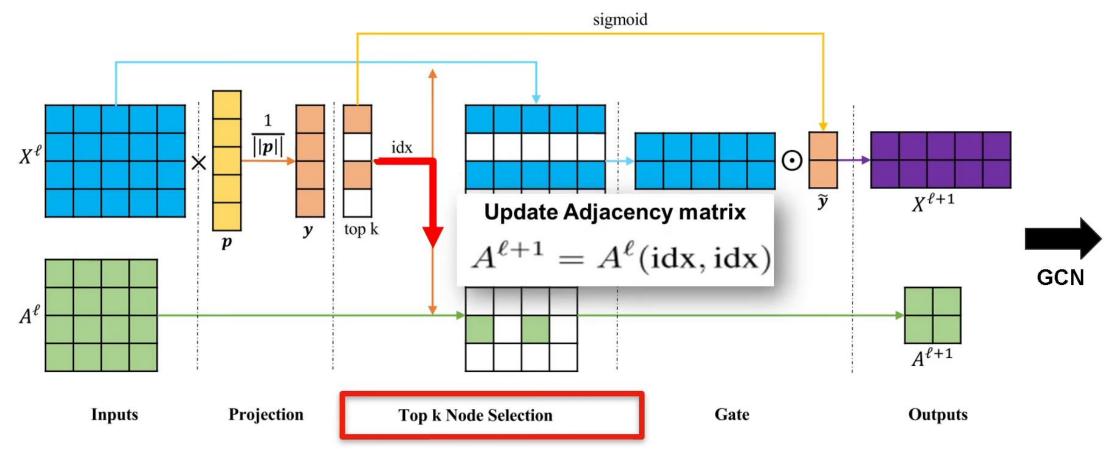




2. Top k Node Selection(Extract feature)

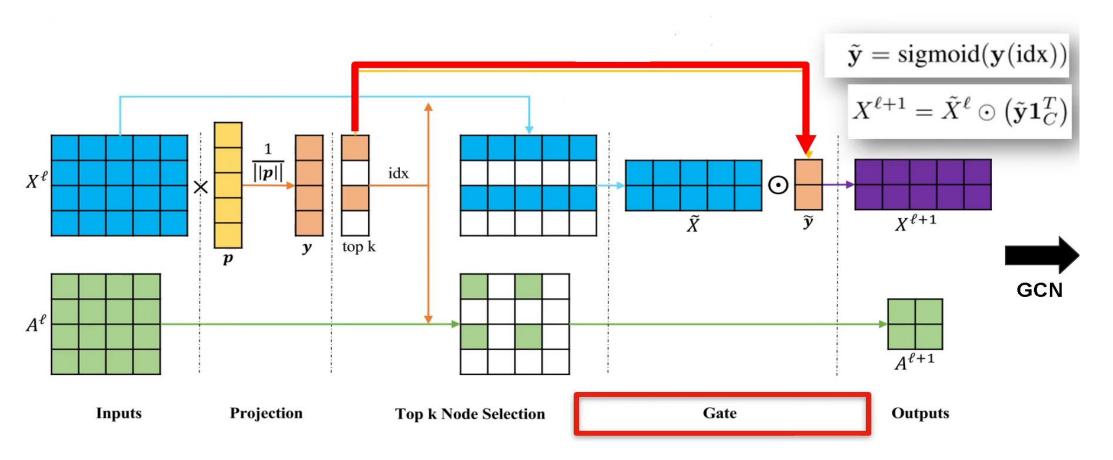


3. Top k Node Selection(Update Adjacency matrix)



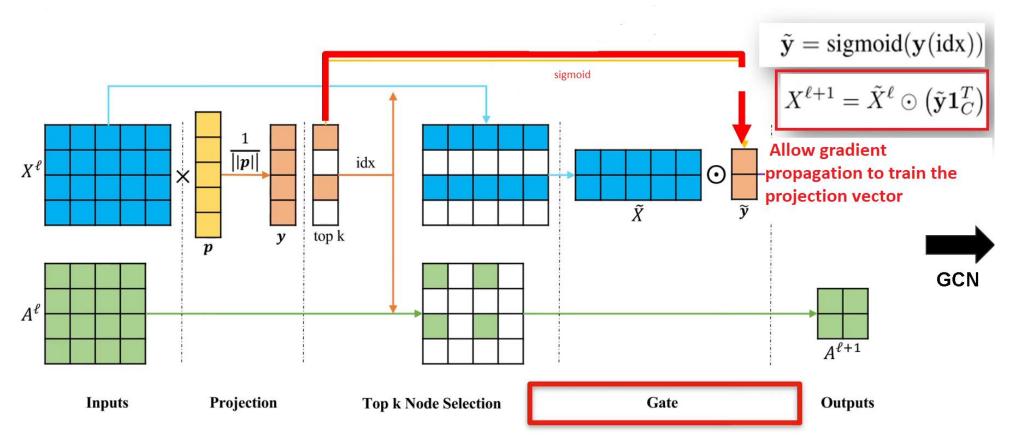
4. Gate

Control information flow

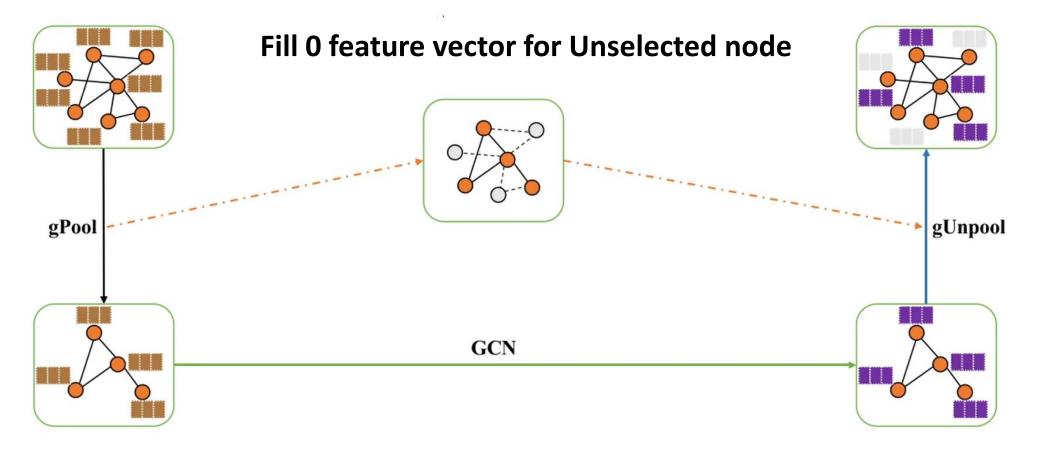


4. Gate(sigmoid)

Control information flow



$$X^{\ell+1} = \text{distribute}(0_{N \times C}, X^{\ell}, \text{idx})$$



 Use 2nd-order adjacency matrix to avoid too sparse connectivity after gPooling

$$A^2 = A^{\ell} A^{\ell}, \quad A^{\ell+1} = A^2(\mathrm{idx}, \mathrm{idx})$$

• Emphasize each node's own feature

$$\hat{A} = \hat{A} + 2I$$

Experiments (described in the paper)

1. Datasets

Node classification

Table 1. Summary of datasets used in our node classification experiments (Yang et al., 2016; Zitnik & Leskovec, 2017). The Cora, Citeseer, and Pubmed datasets are used for transductive learning experiments.

Dataset	Nodes	Features	Classes	Training	Validation	Testing	Degree
Cora	2708	1433	7	140	500	1000	4
Citeseer	3327	3703	6	120	500	1000	5
Pubmed	19717	500	3	60	500	1000	6

Inductive learning experiment (Labels of parts of nodes are unknow)

Table 2. Summary of datasets used in our inductive learning experiments. The D&D (Dobson & Doig, 2003), PROTEINS (Borgwardt et al., 2005), and COLLAB (Yanardag & Vishwanathan, 2015) datasets are used for inductive learning experiments.

Dataset	Graphs	Nodes (max)	Nodes (avg)	Classes
D&D	1178	5748	284.32	2
PROTEINS	1113	620	39.06	2
COLLAB	5000	492	74.49	3

Experiments (described in the paper)

2. Performance

Table 3. Results of transductive learning experiments in terms of node classification accuracies on Cora, Citeseer, and Pubmed datasets. g-U-Nets denotes our proposed graph U-Nets model.

Models	Cora	Citeseer	Pubmed	
DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%	
Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%	
Chebyshev (Defferrard et al., 2016)	81.2%	69.8%	74.4%	
GCN (Kipf & Welling, 2017)	81.5%	70.3%	79.0%	
GAT (Veličković et al., 2017)	$83.0\pm0.7\%$	$72.5\pm0.7\%$	$79.0\pm0.3\%$	
g-U-Nets (Ours)	$\textbf{84.4} \pm \textbf{0.6\%}$	$\textbf{73.2}\pm\textbf{0.5\%}$	$\textbf{79.6} \pm \textbf{0.2\%}$	

Table 4. Results of inductive learning experiments in terms of graph classification accuracies on D&D, PROTEINS, and COLLAB datasets. g-U-Nets denotes our proposed graph U-Nets model.

Models	D&D	PROTEINS	COLLAB	
PSCN (Niepert et al., 2016)	76.27%	75.00%	72.60%	
DGCNN (Zhang et al., 2018)	79.37%	76.26%	73.76%	
DiffPool-DET (Ying et al., 2018)	75.47%	75.62%	82.13%	
DiffPool-NOLP (Ying et al., 2018)	79.98%	76.22%	75.58%	
DiffPool (Ying et al., 2018)	80.64%	76.25%	75.48%	
g-U-Nets (Ours)	82.43%	77.68%	77.56%	

Experiments (described in the paper)

3. Network structure study

• Network depth (Works for shallow network and consistent with U-net)

Table 7. Comparison of different network depths in terms of node classification accuracy on Cora, Citeseer, and Pubmed datasets. Based on g-U-Nets, we experiment with different network depths in terms of the number of blocks in encoder and decoder parts.

Cora	Citeseer	Pubmed
$82.6\pm0.6\%$	$71.8\pm0.5\%$	$79.1\pm0.3\%$
$83.8\pm0.7\%$	$72.7\pm0.7\%$	$79.4\pm0.4\%$
$\textbf{84.4} \pm \textbf{0.6\%}$	$\textbf{73.2} \pm \textbf{0.5\%}$	$\textbf{79.6} \pm \textbf{0.2\%}$
$84.1\pm0.5\%$	$72.8\pm0.6\%$	$79.5\pm0.3\%$
	$82.6 \pm 0.6\%$ $83.8 \pm 0.7\%$ $84.4 \pm 0.6\%$	$82.6 \pm 0.6\%$ $71.8 \pm 0.5\%$ $83.8 \pm 0.7\%$ $72.7 \pm 0.7\%$ $84.4 \pm 0.6\%$ $73.2 \pm 0.5\%$

Parameter number (Add small parameters for large improvement)

Table 8. Comparison of the g-U-Nets with and without gPool or gUnpool layers in terms of the node classification accuracy and the number of parameters on Cora dataset.

Models	Accuracy	#Params	Ratio of increase
g-U-Nets without gPool or gUnpool	$82.1\pm0.6\%$	75,643	0.00%
g-U-Nets (Ours)	$\textbf{84.4} \pm \textbf{0.6\%}$	75,737	0.12%

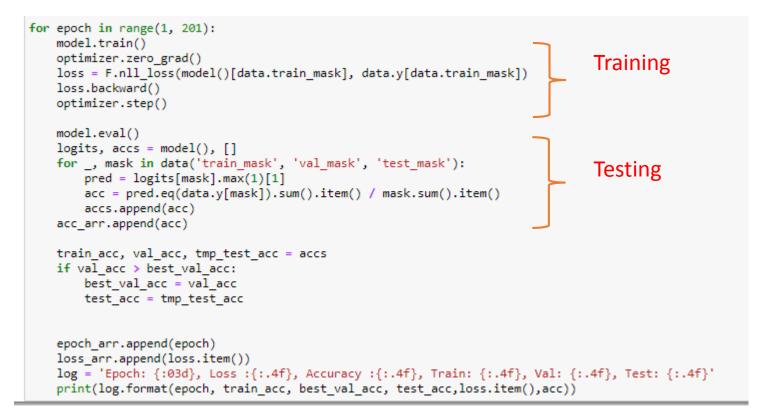
Graph U-Net in PyTorch Geometric

```
dataset = Planetoid(root='tmp/Cora', name='Cora')
data = dataset[0]
```

Data Loading

device = 'cpu'
model, data = Net().to(device), data.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=0.001)

Graph U-Net in PyTorch Geometric



Experiment result

- Data: Cora
- Epoch: 200

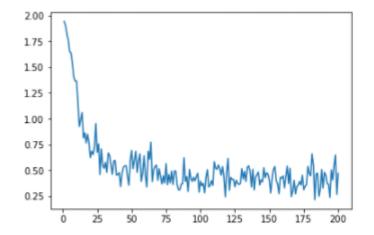
Epoch: 182, Loss :1.0000, Accuracy :0.7960, Train: 0.7950, Val: 0.3310, Test: 0.7870 Epoch: 001, Loss :0.5000, Accuracy :0.4280, Train: 0.4290, Val: 1.9623, Test: 0.4290 Epoch: 183, Loss :1.0000, Accuracy :0.7960, Train: 0.7950, Val: 0.3709, Test: 0.7840 Epoch: 002, Loss :0.6071, Accuracy :0.5200, Train: 0.5530, Val: 1.8873, Test: 0.5530 Epoch: 184, Loss :1.0000, Accuracy :0.7960, Train: 0.7950, Val: 0.4090, Test: 0.7890 Epoch: 003, Loss :0.6786, Accuracy :0.5640, Train: 0.5970, Val: 1.8642, Test: 0.5970 Epoch: 185, Loss :1.0000, Accuracy :0.7960, Train: 0.7950, Val: 0.2991, Test: 0.7880 Epoch: 004, Loss :0.7500, Accuracy :0.6120, Train: 0.6270, Val: 1.7876, Test: 0.6270 Epoch: 186, Loss :1.0000, Accuracy :0.7960, Train: 0.7950, Val: 0.3706, Test: 0.7910 Epoch: 005, Loss :0.7929, Accuracy :0.6400, Train: 0.6540, Val: 1.6981, Test: 0.6540 Epoch: 187, Loss :1.0000, Accuracy :0.7960, Train: 0.7950, Val: 0.5192, Test: 0.7850 Epoch: 006, Loss :0.8429, Accuracy :0.6580, Train: 0.6930, Val: 1.6356, Test: 0.6930 Epoch: 188, Loss :1.0000, Accuracy :0.7960, Train: 0.7950, Val: 0.4711, Test: 0.7860 Epoch: 007, Loss :0.8857, Accuracy :0.6900, Train: 0.7160, Val: 1.5279, Test: 0.7160 Epoch: 189, Loss :1.0000, Accuracy :0.7960, Train: 0.7950, Val: 0.4144, Test: 0.7890 Epoch: 008, Loss :0.9071, Accuracy :0.7200, Train: 0.7350, Val: 1.4898, Test: 0.7350 Epoch: 190, Loss :1.0000, Accuracy :0.7960, Train: 0.7950, Val: 0.2995, Test: 0.7890 Epoch: 009, Loss :0.9286, Accuracy :0.7520, Train: 0.7650, Val: 1.4498, Test: 0.7650 Epoch: 191, Loss :1.0000, Accuracy :0.7960, Train: 0.7950, Val: 0.4400, Test: 0.7890 Epoch: 010, Loss :0.9500, Accuracy :0.7560, Train: 0.7750, Val: 1.4351, Test: 0.7750 Epoch: 192, Loss :1.0000, Accuracy :0.7960, Train: 0.7950, Val: 0.3971, Test: 0.7850 Epoch: 011, Loss :0.9643, Accuracy :0.7700, Train: 0.7750, Val: 1.2631, Test: 0.7750 Epoch: 193, Loss :1.0000, Accuracy :0.7960, Train: 0.7950, Val: 0.3801, Test: 0.7730 Epoch: 012, Loss :0.9643, Accuracy :0.7740, Train: 0.7770, Val: 1.1646, Test: 0.7770 Epoch: 194, Loss :1.0000, Accuracy :0.7960, Train: 0.7950, Val: 0.4296, Test: 0.7700 Epoch: 013, Loss :0.9571, Accuracy :0.7820, Train: 0.7810, Val: 1.1423, Test: 0.7810 Epoch: 014, Loss :0.9643, Accuracy :0.7820, Train: 0.7810, Val: 1.0445, Test: 0.7760 Epoch: 195, Loss :1.0000, Accuracy :0.7960, Train: 0.7950, Val: 0.4701, Test: 0.7700 Epoch: 015, Loss :0.9643, Accuracy :0.7840, Train: 0.7850, Val: 1.1282, Test: 0.7850 Epoch: 196, Loss :1.0000, Accuracy :0.7960, Train: 0.7950, Val: 0.3588, Test: 0.7710 Epoch: 016, Loss :0.9571, Accuracy :0.7840, Train: 0.7850, Val: 0.8989, Test: 0.7840 Epoch: 197, Loss :1.0000, Accuracy :0.7960, Train: 0.7950, Val: 0.5546, Test: 0.7690 Epoch: 017, Loss :0.9643, Accuracy :0.7840, Train: 0.7850, Val: 0.8642, Test: 0.7750 Epoch: 198, Loss :1.0000, Accuracy :0.7960, Train: 0.7950, Val: 0.3649, Test: 0.7620 Epoch: 018, Loss :0.9714, Accuracy :0.7840, Train: 0.7850, Val: 0.8773, Test: 0.7720 Epoch: 199, Loss :1.0000, Accuracy :0.7960, Train: 0.7950, Val: 0.4322, Test: 0.7680 Epoch: 019, Loss :0.9643, Accuracy :0.7840, Train: 0.7850, Val: 0.8510, Test: 0.7720 Epoch: 200, Loss :1.0000, Accuracy :0.7960, Train: 0.7950, Val: 0.4251, Test: 0.7710 Fnoch: 020. Loss :0.9786. Accuracy :0.7840. Train: 0.7850. Val: 0.8236. Test: 0.7660

Experiment result

Loss graph

plt.savefig("loss_viz.png", dpi=300) plt.clf() # Epoch-Accuracy 시각화 plt.plot(epoch_arr, loss_arr)

[<matplotlib.lines.Line2D at 0x190ea240970>]



Accuracy graph

[<matplotlib.lines.Line2D at 0x190fcd8fc70>]

